MHY-449, a novel dihydrobenzofuro[4,5-b][1,8] naphthyridin-6-one derivative, induces apoptotic cell death through modulation of Akt/FoxO1 and ERK signaling in PC3 human prostate cancer cells.

نویسندگان

  • Sun Hwa Lee
  • Yong Jung Kang
  • Bokyung Sung
  • Dong Hwan Kim
  • Hyun Sook Lim
  • Hye Rim Kim
  • Seong Jin Kim
  • Jeong-Hyun Yoon
  • Hyung Ryong Moon
  • Hae Young Chung
  • Nam Deuk Kim
چکیده

Previously, we reported on the anticancer effect of the diastereoisomeric compound MHY-449, a novel dihydro-benzofuro[4,5-b][1,8] naphthyridin-6-one derivative, in HCT116 human colon cancer cells. In the current study, we investigated whether MHY-449 has anticancer effect in prostate cancer cells, and if so, what the molecular mechanisms are. We examined the growth inhibitory effect of MHY-449 on p53 wild‑type (p53-wt) LNCaP (androgen‑dependent) and p53-null PC3 (androgen-independent) prostate cancer cells. MHY-449 treatment in androgen-independent and p53-null PC3 cells resulted in inhibition of cell growth and induction of apoptosis in a concentration-dependent manner. However, MHY-449 did not show any significant effects on the growth inhibition and apoptotic cell death in androgen-dependent and p53-wt LNCaP cells. Therefore, we used PC3 cells for further studies. The induction of apoptosis in PC3 cells was observed by decreased viability, DNA fragmentation, cleavage of poly (ADP-ribose) polymerase, activations of caspase-3, -8 and -9, and alteration in the ratio of Bax/Bcl-2 protein expression. In addition, MHY-449 induced increase of late apoptosis and sub-G1 DNA which were observed by flow cytometry analysis. Furthermore, MHY-449 reduced the phosphorylation of Akt and FoxO1 and induced the translocation of FoxO1 from cytoplasm to nucleus as shown by western blot analysis. MHY-449 treatment activated extracellular signal-regulated kinase (ERK) signaling in a concentration-dependent manner. MHY-449-induced apoptosis was partially prevented by pretreatment with the ERK inhibitor PD98059 suggesting involvement of ERK in the MHY-449-induced apoptosis. Taken together, these findings suggest that MHY-449 induces apoptosis via downregulation of the Akt/FoxO1 and activation of ERK in androgen-independent, p53-null and PTEN-negative PC3 human prostate cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivative, MHY-449, induces cell cycle arrest and apoptosis via the downregulation of Akt in human lung cancer cells.

The anticancer properties of MHY-449, a novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivative, in various human cancer cell lines have been previously reported. The aim of the present study was to investigate the activities of MHY-449 on human lung cancer cells in order to elucidate its underlying molecular mechanisms of action. The result showed that MHY-449 treatment inhibited cell ...

متن کامل

MHY-449, a novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivative, mediates oxidative stress-induced apoptosis in AGS human gastric cancer cells.

MHY-449 is a novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivative designed and synthesized as a potential anticancer agent. The present study aimed to examine the anticancer activity and underlying mechanism of MHY-449. The cell viability assay performed in AGS human gastric carcinoma cells demonstrated that MHY-449 inhibited cell proliferation in a concentration-dependent manner. MH...

متن کامل

Epigallocatechin-3-Gallate Induces Apoptosis through Up-regulation of Bax and Down-regulation of Bcl-2 in Prostate Cancer Cell Line

Background and Aims: Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound from green tea, which its anticancer effects on many types of cancers have been confirmed, but the molecular mechanism by which EGCG induces apoptosis remains unknown. The aim of the present study was to investigate anti-proliferative properties and apoptotic signaling pathway of EGCG on PC3 human prostate cancer ...

متن کامل

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Quercetin Synergistically Enhances the Anticancer Efficacy of Docetaxel through Induction of Apoptosis and Modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line

Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of oncology

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2014